
 
 

Using Statistics to Understand Extreme Values 
with Application to Hydrology 

*1Akanni O.O., 2 Fantola J.O. and 3Ojedokun J.P. 

Abstract– Environmental issues are extremely important to human existence. These issues vary from various pollution levels to climate change. They 

bring hazardous impacts to man in both developed and developing countries most especially when extreme cases are experienced. These extreme 
cases are more dangerous in developing countries than in developed countries due to inadequate monitoring research and projection. It is therefore 

necessary that we quantify these extreme changes in environmental problems statistically; these efforts will be tailored towards achieving sustainability 
using the appropriate statistical methodologies.  
This research work studies the applications of stochastic models for understanding extreme values in hydrology using monthly rainfall data from 1956-

2013 in the south-western zone, Nigeria. The exploratory data analysis tools used reveal the presence of extreme values in the data. These may 
indicate the need to study the data. The Block Maxima Method was used to select the extreme values and three types of extreme value distributions 
(Type I, Type II and Type III) were used, the 3 parameters case of Type II and Type III extreme value distributions were studied and compared. The 

different return periods and return levels were found and it was discovered that the return levels increased over the periods (years). The implication of 
this result is that there is tendency of extremely high rainfall in the nearest future. The attention of governments and stakeholders must be drawn to this 
case as it may lead to continuous flooding as currently being experienced. 

 
Index Terms– Hydrology, Pollution, Extreme Value Distributions, Return Levels, Flooding, Parameters, Stochastic. 
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1   INTRODUCTION 

Stochastic models are very useful in understanding the 

behaviour of different phenomena because events such as 

floods, hurricanes, earthquakes, stock market crashes and so on 

are natural phenomena which seem to follow no rule however, 

researches have helped to discover distributions that can 

readily model these extreme events (Chavez and Roehrl, 2004). 

The last two decades in many cities in the world have been 

associated with extreme events and therefore there is a need to 

assess the probability of these rare events. Tella (2011); the 

weather has been funny; seasons have been shifting fairly 

unpredictably. In today’s world, we are having shorter winter 

and longer summer in the temperate region. In the tropics, we 

are experiencing shorter rainy season, longer dry season and 

shorter harmattan or cold wind. Rains are coming late and they 

come furiously when they fall, ocean levels are rising and 

breaking their boundaries causing landslide and massive 

flooding (Pakistan flood disaster 2010; Ibadan flood disaster 

2011; hurricane katrina that ravaged the gulf states of USA 

(New Orleans) 2005; Southern California wildfire 2009 which 

forced 500 000 residents to flee their homes; Australian fire 

disaster 2008 and 2009;  Russia fire disaster 2010; Markudi flood 

disaster 2012; Lagos ocean surge i.e. Kuramo beach 2012;  

alarming warning of ocean surge in River Niger by National 

Emergency Management Authority 2012; Nepal earthquake 

2015 e.t.c.). 

______________________________________                                    

*Corresponding Author: 1Akanni, Olukunmi Olatunji 

Department of Statistics, University of Ibadan, Nigeria. 
tjstatistician@yahoo.com, +234-8035294216. 
2 Fantola J.O., Department of Mathematics and Statistics,The 
Polytechnic Ibadan, Nigeria. fantolajubril56@yahoo.com 
3Ojedokun J.P., Department of Statistics, University of Ibadan, 
Nigeria. ponmilej@yahoo.com 

 

Countries in semi-arid regions are experiencing less rainfall 

and more droughts. In 2008, Darfur in Sudan experienced 

severe drought causing a huge loss of the human population. 

Tella (2011) pointed out that Lesotho experienced high 

temperature and drought which destroyed crops and caused a  

huge loss of the human population. 

2   THE EXTREME VALUE ANALYSIS 

Extreme value distributions occur as limiting distributions for 

maximum or minimum (extreme values) of a sample of 

independent and identically distributed random variables as 

the sample size increases. Extreme Value Theory (EVT) or 

Extreme Value Analysis (EVA) is a branch of Statistics dealing 

with the extreme deviations from the median of probability 

distributions from a given ordered sample of a given random 

variable, the probability of events that are more extreme than 

any observed prior samples. It is a discipline that develops 

statistical techniques for describing the unusual phenomena 

such as floods, wind guests, air pollution, earthquakes, risk 

management, insurance and financial matters 

(Lakshminarayan, 2006). Extreme Value Theory and Distribu-

tion has found applications in hydrology, engineering, 

environmental research and meteorology, stock market and 

finance. The prediction of earthquake magnitudes (1755 Lisbon 

earthquakes), modeling of extremely high temperatures and 

rainfalls, and the prediction of high return levels of wind speed 

relevant for the design of civil engineering structure have been 

carried out using extreme value distribution (Gumbel).  

A review of this statistical methodology can be found in 

Broussard and Booth (1998), Behr et al., (1991), Xapson et 

al.,(1998), Lee (1992), Yasuda and Mori (1997), Jan et al.,(2004), 
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Jandhyala et al.,(1999), Kartz and Brown (1992), Charles (1995), 

Richard et al., (2002), Hosking (1985,1990), Manfred and Evis 

(2006), Koutsoyiannis (2004; 2009), Hosking et al., (1985), Isabel 

and Claudia (2010), and Olivia and Jonathan (2012). Alexander 

and McNeil (1999) used Extreme Value Theory (EVT) in risk 

management (RM) as a method for modelling and measuring 

extreme risks; considered Peak Over Threshold (POT) model 

and emphasized the generality of the approach. Within the 

POT class of models, there are two styles of analysis namely: 

semi-parametric models- built around the Hill estimator and its 

relatives (Beirlant et al.,1996, Daneilsson et al., 1998); and the 

fully parametric models- based on the Generalized Pareto 

Distribution i.e. GPD (Embrechts et al.,1998). Alexander (1999) 

used GPD as probability distribution for risk management and 

considered it as equally important as (if not more important 

than) the Normal distribution because Normal distribution 

cannot model certain market returns with infinite fourth 

moment. 

3   MATERIALS AND METHODS 

3.1 Exploratory Data Analysis 

 
Figs. 1&2: Time and Box Plot of the Rainfall 

The time plot shows the systematic movement of the series or 

data over a period of time, it shows that there are extreme 

values i.e. maximum values, and the box plot confirms the 

presence of extreme values which calls for urgent attention 

because they are rare events and hazardous. 

3.2 Estimation of Parameters of Extreme Value            
Distributions 

There are different methods of estimating the parameters of the 

extreme value distributions namely: Maximum Likelihood 

(ML) estimations in the possible presence of covariates, 

Probability Weighted Moment (PWM) or (L- Moments), Least 

Square Method e.t.c. Probablity Weighted Moments (PWM or 

L- Moments) are more popular than ML in applications to 

hydrologic extreme because of their computational simplicity 

and their good technique performance for small samples 

(Hosking 1985, 1990). Though Probability Weighted Moments 

technique has the disadvantage of not being able to readily 

incorporate covariates. On the other hand, it is better to apply 

Maximum Likelihood technique in the presence of covariates 

(Richard et al., 2002). One advantage of the Maximum 

Likelihood Method is that approximate standard errors for 

estimated parameters and design values can be automatically 

produced either through the information matrix e.g. extremes 

software (Farago and Katz, 1990) or through profile likelihood 

(Coles, 2001). But like the parameter estimates themselves, such 

standard errors can be quite unreliable for small sample sizes. 

The Maximum Likelihood technique would be applied in the 

research because the sample size is large (n > 25) and the 

technique produces minimum variance of the estimated 

parameters i.e. produces reliable approximate standard errors 

for estimated parameters. 

 
3.3 Maximum Likelihood Estimation (MLE) of Gumbel 

Distribution 

The MLE (Hanter and More 1965) is the parameter that 

maximizes the log of likelihood function L. Given 

independent and identically distributed random variables X, 

the likelihood function L is given as: 

L =𝑓(𝑥1, 𝜃). 𝑓(𝑥2, 𝜃)… 𝑓(𝑥𝑛 , 𝜃)= L=  


n

i

x
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θ ,f i                                                                   
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1
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By maximization, we choose 𝜇, 𝜎 such that 

[
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= [

0
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]  

Using Newton – Raphson Algorithm (Second order) 
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Where H is called Hessian matrix 

Also, g =

[
 
 
 

𝜕𝑙

𝜕𝜇
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∴  To obtain estimates of 𝜇, 𝜎 

[
𝜇(1)

𝜎(1)

]=[
𝜇(0)

𝜎(0)

] − 𝐻−1(𝜇(0) 𝜎(0))g(𝜇(0) 𝜎(0)) 

The iteration converges when 

[[
𝜇(1)

𝜎(1)

] − [
𝜇(0)

𝜎(0)

]]

1

[[
𝜇(1)

𝜎(1)

] − [
𝜇(0)

𝜎(0)

]] ≤ k or 

(𝜇(1) − 𝜇(0))
2
+ (𝜎(1) − 𝜎(0))

2
< k 

Where  𝛼(0), 𝜇(0)and 𝜎(0)are initial values; 𝜇(1)and 𝜎(1)are 

iterative values, and k is the tolerance level for the change. 

The final value of 𝜇(1)and 𝜎(1)are the estimates after the 

convergence of the iteration. 

3.4 Maximum Likelihood Estimation of 3 Parameters 
Weibull Distribution 

Given a random samples x1, x2,...,xn, the likelihood function of 

3-parameter weibull distribution is given as L(𝜇, 𝜎, 𝛼) = 
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International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 
ISSN 2229-5518 

1581

IJSER © 2015 
http://www.ijser.org 

IJSER



 
 

The equations can be solved numerically to obtain  ˆ,ˆ and 

̂ . The other form of three parameters weibull distribution is 

given as:  
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𝛼

v−𝜇
(

𝑥−𝜇

v−𝜇
)

1
𝑒𝑥𝑝 [−(

𝑥−𝜇

v−𝜇
)


]                                         (16)  

Where 𝜎 = v − 𝜇 and v is called characteristic value. 

The Likelihood function L is given as 

L =  


n

i
ixf

1

 = (
𝛼

v−𝜇
)

n















n

i

ix

1 



v

1α
𝑒𝑥𝑝 [−(

𝑥−𝜇

v−𝜇
)

α
]    (17) 

log (L) = nln 
























































n

i

n

i

ixix

11

1

ln
vvv

  (18)                                                                        

= n ln 𝛼 − 𝑛𝛼 ln(v − 𝜇) + (𝛼 − 1)


n

i 1

ln (𝑥𝑖 − 𝜇) − 


n

i 1

(
𝑥𝑖−𝜇

v−𝜇
)


  (19) 

Let w = v − 𝜇 to reduce the magnitude of the number in 

equation (19) 
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Then μ , α  and w can be obtained using second order 

Newton – Raphson method.  It requires to obtain Hessian 

matrix H given by: 

H =
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𝑥𝑖 − 𝜇

w
)

𝛼

(𝑙𝑛(𝑥𝑖 − 𝜇))
2

𝑛

𝑖=1

− (𝑙𝑛𝑤)2 

             
 1

𝑛
∑(

𝑥𝑖 − 𝜇

w
)

𝛼
𝑛

𝑖=1

+ 2 ln𝑤
 1

𝑛
∑(

𝑥𝑖 − 𝜇

w
) ln(𝑥𝑖 − 𝜇)

𝑛

𝑖=1

       (26)  

𝜕2L


𝜕μ2
= −𝛼

(𝛼 − 1)

w2

1

𝑛
∑ (

𝑥𝑖 − 𝜇

w
)

2
− (𝛼 − 1)

𝑛

𝑖=1

1

𝑛
 ∑ (

𝑥𝑖 − 𝜇

w
)

2
       (27)

𝑛

𝑖=1

 

𝜕2L


𝜕α∂w
= −

1

w
+

𝛼

w

1

𝑛
∑(

𝑥𝑖 − 𝜇

w
)


ln(𝑥𝑖 − 𝜇) +
1 − 𝛼

w

𝑛

𝑖=1

  

               (ln w)
1

𝑛
∑(

𝑥𝑖 − 𝜇

w
)

𝛼
𝑛

𝑖=1

                                                     (28) 

𝜕2𝐿∗

𝜕𝛼𝜕𝜇
= −

1

𝑛
∑(𝑥𝑖 − 𝜇)

1
+

𝛼

w

𝑛

𝑖=1

∑

1








 




w
ix

𝑛

𝑖=1

ln(𝑥𝑖 − 𝜇)

+
(1 − 𝛼)

w
ln𝑤

1

𝑛
∑(

𝑥𝑖 − 𝜇

w
)

1

𝑛

𝑖=1

                  (29) 

𝜕2L


𝜕𝜇𝜕w
=

−𝛼2

w2

1

𝑛
∑(

𝑥𝑖 − 𝜇

w
)

1

𝑛

𝑖=1

                                                      (30)  

and f = 

[
 
 
 
 
𝜕L∗

𝜕w

𝜕L∗

𝜕α

𝜕L∗

𝜕μ ]
 
 
 
 

   

[
w(𝑛𝑒𝑤)

𝛼(𝑛𝑒𝑤)

𝜇(𝑛𝑒𝑤)
] = [

w(𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑)

𝜇(𝑜𝑙𝑑)
] − H−1(w(𝑜𝑙𝑑) α(𝑜𝑙𝑑) μ(𝑜𝑙𝑑))f (w(𝑜𝑙𝑑) α(𝑜𝑙𝑑) μ(𝑜𝑙𝑑)) 

Note: The three parameters weibull distribution reduces to 

two parameters weibull distribution by setting equations (22), 

(23) and (24) to zero, then solve with i=j=2. The iteration 

converges if; 

[[
w(𝑛𝑒𝑤)

𝛼(𝑛𝑒𝑤)

𝜇(𝑛𝑒𝑤)
] − [

w(𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑)

𝜇(𝑜𝑙𝑑)
]]

1

[[
w(𝑛𝑒𝑤)

𝛼(𝑛𝑒𝑤)

𝜇(𝑛𝑒𝑤)
] − [

w(𝑜𝑙𝑑)

𝛼(𝑜𝑙𝑑)

𝜇(𝑜𝑙𝑑)
]] < k 

Where k is the level of tolerance. 
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3.5 Maximum Likelihood Estimation of 2 Parameters 
Weibull Distribution 

𝑓(𝑥) =
𝛼

𝜎
(

𝑥

𝜎
)

1
𝑒𝑥𝑝 [−(

𝑥

𝜎
)


]        𝛼 > 0, 𝜎 > 0, 

L(𝑥1 … .𝑥𝑛 , 𝛼, 𝜎) = 𝑓(𝑥1). 𝑓(𝑥2),… , 𝑓(𝑥𝑛)          

= 
𝛼

𝜎
(

𝑥1

𝜎
)

1
 𝑒𝑥𝑝 [−(

𝑥1

𝜎
)


] ×  
𝛼

𝜎
(

𝑥2

𝜎
)

1
 𝑒𝑥𝑝 [−(

𝑥2

𝜎
)


]   × …×

   
𝛼

𝜎
(

𝑥𝑛

𝜎
)

1
 𝑒𝑥𝑝 [−(

𝑥𝑛

𝜎
)


]                                                              (31)    

L(𝑥1, 𝑥2, … 𝑥𝑛 𝛼, 𝜎) = 










n

i 1 σ

α
[(

𝑥𝑖

𝜎
)

1
] 𝑒𝑥𝑝 (

−𝑥𝑖

𝜎
)

𝛼

               (32) 

  
𝜕 ln𝐿

𝜕𝛼
=

𝑛

𝛼
+ 



n

i 1

ln
ix −

1

𝜎 


n

i

ix
1


ln 

ix = 0                        (33) 

𝜕 ln𝐿

𝜕𝜎
= −

𝑛

𝜎
+

1

𝜎2 


n

i

ix
1


= 0                                                          (34)                                                                                              

Eliminate 𝜎 in the equations (33) and (34), we have: 










 
n

i

in

i

i

n

i

ii

x
n

x

xx

1

1

1 ln
11

ln





= 0                                           (35)                                                                                                         

𝛼 is obtained by using Newton–Raphson method i.e. 

 
 n

n
nn

xf

xf
xx

11                                                                     (36)                                                                                                                                               

where    








 
n

i

in

i

i

n

i

ii

x

x

xx

f
1

1

1 ln
11

ln

n






                    (37)                                                                                                 

   (38)                                         

 

Once 𝛼 is determined,𝜎 can be estimated as
n




n

i

ix
1



  

3.6 Maximum Likelihood Estimation of Frechet 
Distribution 

L       
















 









n

i

i

n

i

i xexpx
1

1

1

,,




  nn  

𝜕logL

𝜕𝜇
= 0,

𝜕logL

𝜕𝜎
= 0 𝑎𝑛𝑑 

𝜕logL

𝜕𝛼
= 0 

The derivatives give three unknown equations: 

   

 
 






















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i
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i

i

n

i

ii

x

x

xx

1

1

1 log

log

ˆ






 


n

n
        (39)                                                                          

 n

 
 

 
 

 











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
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


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i i

n

i

i

n

i

i

x
x
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1

1

1

1

1
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











                        (40)                                                                                           

and  





1
11

ˆ













 

n

ix
n

                                               

(41)

                                                                                

 

4 RESULTS AND DISCUSSION 

4.1   Results 

4.1.1 Model Diagnosis of Extreme Value Distributions 

 

Fig. 3: Probability Plot of Gumbel Distribution 

 

Fig. 4: Quantile – Quantile Plot of Gumbel Distribution 
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Fig. 5: Probability Plot of 2 Parameters Frechet Distribution 

 

Fig. 6: Probability Plot of 3 Parameters Frechet Distribution 

 

Fig. 7: Quantitle – Quantile Plot of 2 Parameters Frechet Distribution 

 

Fig. 8: Quantitle – Quantile Plot of 3 Parameters Frechet Distribution 

 

Fig. 9:  Probability Plot of 2 Parameters Weibull Distribution 

 

Fig. 10:  Probability Plot of 3 Parameters Weibull Distribution 

 

Fig. 11: Quantile-Quantile Plot of 2 Parameters Weibull Distribution 

 

Fig.12: Quantile-Quantile Plot of 3 Parameters Weibull Distribution 
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4.1.2 Predicting the Probability of Exceedness using 
Gumbel Distribution 

The probability that the maximum rainfall denoted by xi will 

exceed this level (value) i.e. 407.1 is given as: 

  
P(xi > 407.1)  = 0.032 4630 29 

4.1.3 Predicting Return Period Using Gumbel 
Distribution 

The return period of the Gumbel distribution is given as:               

T =     [P ( xi > k)]-1 

  

                  = (0.032 463 029)-1  =  30.80 ≈31 years  

          
4.1.4 Computing Return Levels for Different Return 

Periods 

Assuming 100 years return period i.e. T= 100 years 

 

 

 

            = F–1 ( 0.99) i.e. U(100) = F–1 ( 0.99) = 426.6 

The return levels for different return periods are given 

graphically as thus: 

 

Fig. 13: Return Levels of the Rainfall 

4.2   Discussion 

This work examined the statistical model of extreme values in 

Hydrology. Exploratory Data Analysis (EDA) using various 

EDA Tools were carried out on the data and the Box Plot 

revealed on the whole data that there is the presence of extreme 

values; this demands urgent attention as this would have 

resulted in torrential rain which can lead to flood. The Block 

Maximum Method (BMM) was used to select the extreme 

values and the Maximum Likelihood Estimation method was 

used to estimate the parameters of the distributions, The 

extreme value distributions namely: Type I (Gumbel), Type II 

(Frechet) for both 2 parameters and 3 parameters cases and 

Type III (Weibull) for both 2 parameters and 3 parameters cases 

were used to model annual maximum rainfall of south western 

zone in Nigeria from 1956 – 2013. It was discovered that the 3 

parameters of Type II and Type III distributions were more 

appropriate than 2 parameters as this is also evident in the 

work of Koutsoyiannis (Koutsoyiannis, 2004). Model diagno-

stics were carried out to assess the fitness of the model to the 

data. The estimated return levels for different return periods 

revealed an increase in the value over years as this demands 

urgent attention and appropriate measure. 

5 CONCLUSION 
Extreme Value Distribution is a very powerful statistical 

technique for describing the unusual phenomena such as 

floods, wind guests, air pollution, earthquakes, hurricanes risk 

management, insurance and financial losses as rare events are 

difficult to quantify because they seem to follow no rules. 

Concerns over the environment cannot be over emphasized 

because whatever we do on earth has implication on the 

environment and poses hazard to human existence. Extreme 

Value Distribution plays a major role in monitoring and 

assessing this extreme event so as to be able to take appropriate 

measures towards its effect thus, the distributions were used to 

understand the extreme values in hydrology as this could help 

government and stakeholders in making policies regarding 

environmental and climatic issues. 
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